3.1.61 \(\int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx\) [61]

Optimal. Leaf size=97 \[ -\frac {c \cos (e+f x) \log (1+\sin (e+f x))}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a+a \sin (e+f x))^{3/2}} \]

[Out]

-c*cos(f*x+e)*ln(1+sin(f*x+e))/a^2/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-cos(f*x+e)*(c-c*sin(f*x+e))
^(1/2)/a/f/(a+a*sin(f*x+e))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.31, antiderivative size = 97, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 38, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.132, Rules used = {2920, 2818, 2816, 2746, 31} \begin {gather*} -\frac {c \cos (e+f x) \log (\sin (e+f x)+1)}{a^2 f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a \sin (e+f x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

-((c*Cos[e + f*x]*Log[1 + Sin[e + f*x]])/(a^2*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]])) - (Cos[e +
 f*x]*Sqrt[c - c*Sin[e + f*x]])/(a*f*(a + a*Sin[e + f*x])^(3/2))

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 2746

Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(b^p*f), S
ubst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] ||  !IntegerQ[m + 1/2])

Rule 2816

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]

Rule 2818

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Dist[b*((2*m - 1)
/(d*(2*n + 1))), Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] &&  !(ILtQ[m + n, 0] && G
tQ[2*m + n + 1, 0])

Rule 2920

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Dist[1/(a^(p/2)*c^(p/2)), Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^(
n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p
/2]

Rubi steps

\begin {align*} \int \frac {\cos ^2(e+f x) \sqrt {c-c \sin (e+f x)}}{(a+a \sin (e+f x))^{5/2}} \, dx &=\frac {\int \frac {(c-c \sin (e+f x))^{3/2}}{(a+a \sin (e+f x))^{3/2}} \, dx}{a c}\\ &=-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {\int \frac {\sqrt {c-c \sin (e+f x)}}{\sqrt {a+a \sin (e+f x)}} \, dx}{a^2}\\ &=-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {(c \cos (e+f x)) \int \frac {\cos (e+f x)}{a+a \sin (e+f x)} \, dx}{a \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a+a \sin (e+f x))^{3/2}}-\frac {(c \cos (e+f x)) \text {Subst}\left (\int \frac {1}{a+x} \, dx,x,a \sin (e+f x)\right )}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}\\ &=-\frac {c \cos (e+f x) \log (1+\sin (e+f x))}{a^2 f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {\cos (e+f x) \sqrt {c-c \sin (e+f x)}}{a f (a+a \sin (e+f x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.62, size = 113, normalized size = 1.16 \begin {gather*} \frac {\sec (e+f x) \sqrt {c-c \sin (e+f x)} \left (\log \left (e^{i (e+f x)}\right )-2 \left (1+\log \left (i+e^{i (e+f x)}\right )\right )+\left (\log \left (e^{i (e+f x)}\right )-2 \log \left (i+e^{i (e+f x)}\right )\right ) \sin (e+f x)\right )}{a^2 f \sqrt {a (1+\sin (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]^2*Sqrt[c - c*Sin[e + f*x]])/(a + a*Sin[e + f*x])^(5/2),x]

[Out]

(Sec[e + f*x]*Sqrt[c - c*Sin[e + f*x]]*(Log[E^(I*(e + f*x))] - 2*(1 + Log[I + E^(I*(e + f*x))]) + (Log[E^(I*(e
 + f*x))] - 2*Log[I + E^(I*(e + f*x))])*Sin[e + f*x]))/(a^2*f*Sqrt[a*(1 + Sin[e + f*x])])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(187\) vs. \(2(89)=178\).
time = 0.16, size = 188, normalized size = 1.94

method result size
default \(-\frac {\left (\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right ) \sin \left (f x +e \right )-2 \ln \left (\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right ) \sin \left (f x +e \right )+\ln \left (\frac {2}{1+\cos \left (f x +e \right )}\right )-2 \ln \left (\frac {1-\cos \left (f x +e \right )+\sin \left (f x +e \right )}{\sin \left (f x +e \right )}\right )+2 \sin \left (f x +e \right )\right ) \sqrt {-c \left (\sin \left (f x +e \right )-1\right )}\, \left (\cos \left (f x +e \right ) \sin \left (f x +e \right )+\cos ^{2}\left (f x +e \right )-2 \sin \left (f x +e \right )+\cos \left (f x +e \right )-2\right )}{f \left (-1+\cos \left (f x +e \right )+\sin \left (f x +e \right )\right ) \left (a \left (1+\sin \left (f x +e \right )\right )\right )^{\frac {5}{2}}}\) \(188\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/f*(ln(2/(1+cos(f*x+e)))*sin(f*x+e)-2*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))*sin(f*x+e)+ln(2/(1+cos(f*x+e)
))-2*ln((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))+2*sin(f*x+e))*(-c*(sin(f*x+e)-1))^(1/2)*(cos(f*x+e)*sin(f*x+e)+c
os(f*x+e)^2-2*sin(f*x+e)+cos(f*x+e)-2)/(-1+cos(f*x+e)+sin(f*x+e))/(a*(1+sin(f*x+e)))^(5/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="maxima")

[Out]

integrate(sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(a*sin(f*x + e) + a)^(5/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(a*sin(f*x + e) + a)*sqrt(-c*sin(f*x + e) + c)*cos(f*x + e)^2/(3*a^3*cos(f*x + e)^2 - 4*a^3 + (a
^3*cos(f*x + e)^2 - 4*a^3)*sin(f*x + e)), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {- c \left (\sin {\left (e + f x \right )} - 1\right )} \cos ^{2}{\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {5}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)**2*(c-c*sin(f*x+e))**(1/2)/(a+a*sin(f*x+e))**(5/2),x)

[Out]

Integral(sqrt(-c*(sin(e + f*x) - 1))*cos(e + f*x)**2/(a*(sin(e + f*x) + 1))**(5/2), x)

________________________________________________________________________________________

Giac [A]
time = 0.57, size = 94, normalized size = 0.97 \begin {gather*} \frac {{\left (2 \, \sqrt {a} \log \left ({\left | \cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) \right |}\right ) \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right ) + \frac {\sqrt {a} \mathrm {sgn}\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}{\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2}}\right )} \sqrt {c}}{a^{3} f \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)^2*(c-c*sin(f*x+e))^(1/2)/(a+a*sin(f*x+e))^(5/2),x, algorithm="giac")

[Out]

(2*sqrt(a)*log(abs(cos(-1/4*pi + 1/2*f*x + 1/2*e)))*sgn(sin(-1/4*pi + 1/2*f*x + 1/2*e)) + sqrt(a)*sgn(sin(-1/4
*pi + 1/2*f*x + 1/2*e))/cos(-1/4*pi + 1/2*f*x + 1/2*e)^2)*sqrt(c)/(a^3*f*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e)))

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\cos \left (e+f\,x\right )}^2\,\sqrt {c-c\,\sin \left (e+f\,x\right )}}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(5/2),x)

[Out]

int((cos(e + f*x)^2*(c - c*sin(e + f*x))^(1/2))/(a + a*sin(e + f*x))^(5/2), x)

________________________________________________________________________________________